

Tolerances for bearings

Bearing tolerances and permissible values for the boundary dimensions and running accuracy of bearings are specified. These values are prescribed in JIS B 1514 "tolerances for rolling bearings." (These JIS standards are based on ISO standards.)

Bearing tolerances are standardized by classifying bearings into the following six classes (accuracy in tolerances becomes higher in the order described): 0, 6X, 6, 5, 4 and 2.

Dimensional accuracy

Dimensional accuracy constitutes the acceptable values for bore diameter, outer diameter, assembled bearing width, and bore diameter uniformity as seen in chamfer dimensions, allowable inner ring tapered bore deviation and shape error. Also included are, average bore diameter variation, outer diameter variation, average outer diameter unevenness, as well as raceway width and height variation (for thrust bearings).

Running accuracy

Running accuracy constitutes the acceptable values for inner and outer ring radial runout and axial runout, inner ring side runout, and outer ring outer diameter runout. Allowable rolling bearing tolerances have been established according to precision classes. Bearing precision is stipulated as JIS class 6, class 5, class 4, or class 2, with precision rising from ordinary precision indicated by class 0.

Bearing types and applicable tolerance

	Bearing type	Applicable standard		Toler	ance clas	S		Tolerance table
Deep groove	e ball bearings		class 0	class 6	class 5	class 4	class 2	
Angular con	tact ball bearings		class 0	class 6	class 5	class 4	class 2	
Self-aligning	ball bearings	- JIS B 1514	class 0	_	_	_	_	Table a
Cylindrical re	oller bearigns	(ISO492)	class 0	class 6	class 5	class 4	class 2	
Spherical rol	ller bearings]	class 0	_	_	_	_	
Tapered	metric	JIS B 1514	class 0,6X	class 6	class 5	class 4	_	Table b
roller bearings	Inch	ANSI/ABMA Std.19	class 4	class 2	class 3	class 0	class 00	Table c
Thrust ball b	earings	JIS B 1514	class 0	class 6	class 5	class 4	_	Table d
Spherical rol	ller thrust bearings	(ISO199)	class 0	_	_	_	_	Table e

Comparison of tolerance classifications of national standards

Standard	Applicable standerd		Toler	ance Clas	S		Bearing Types
Japanese industrial standard (JIS)	JIS B 1514	Class 0,6X	Class 6	Class 5	Class 4	Class 2	All type
	ISO 492	Normal class Class 6X	Class 6	Class 5	Class 4	Class 2	Radial bearings
International Organization for Standardization (ISO)	ISO 199	Normal Class	Class 6	Class 5	Class 4	_	Thrust ball bearings
	ISO 578	Class 4	_	Class 3	Class 0	Class 00	Tapered roller bearings (Inch series)
	ISO 1224	_	_	Class 5A	Class 4A	_	Precision instrument bearings
Deutsches Institut fur Normung(DIN)	DIN 620	P0	P6	P5	P4	P2	All type
American National Standards Institute (ANSI)	ANSI/ABMA Std.20	ABEC-1 RBEC-1	ABEC-3 RBEC-3	ABEC-5 RBEC-5	ABEC-7	ABEC-9	Radial bearings (Except tapered roller bearings)
American Bearing Manufacturer's Association	ANSI/ABMA Std.19.1	Class K	Class N	Class C	Class B	Class A	Tapered roller bearings (Metric series)
(ABMA)	ANSI/ABMA Std.19	Class 4	Class 2	Class 3	Class 0	Class 00	Tapered roller bearings (Inch series)

Table a Tolerance of radial bearings (Except tapered roller bearings)
Table a.1 Inner rings

Tubic uit ii		_																								
Nomir bor diame	е				ension ore dia		withir									E	Bore c	liam	eter $V_{d\mathfrak{p}}$		iatior	1				
d																										
mm	1											d	iame	ter se	eries	9	dia	mete	er sei	ries	0.1	dia	mete	r seri	ies 2	.3.4
		clas	ss 0	clas	ss 6	clas	s 5	clas	s 4	cla	ss 2	class	class	class 5	class		class o	lass 6	class 5	class	class	class 0	class 6	class 5	class 4	
over	incl.	high	low	high	low	high	low	hiah	low	high	low	"	•	max		2	U		o max	4	2	0		_ວ max		2
0.0	0.5				-7							10				0.5	0			_	0.5				_	
0.6	2.5	0	-8	0		0	-5	0	-4	0	-2.5	10	9	5		2.5	8	/	4	3	2.5	6	5	4	3	2.5
2.5	10	0	-8	0	-7	0	-5	0	-4	0	-2.5	10	9	5	4		8	/	4	3	2.5	6	5	4	3	2.5
10	18	0	-8	0	-7	0	-5	0	-4	0	-2.5	10	9	5	4	2.5	8	/	4	3	2.5	6	5	4	3	2.5
18	30	0	-10	0	-8	0	-6	0	-5	0	-2.5	13	10	6	5	2.5	10	8	5	4	2.5	8	6	5	4	2.5
30	50	0	-12	0	-10	0	-8	0	-6	0	-2.5	15	13	8	6	2.5	12	10	6	5	2.5	9	8	6	5	2.5
50	80	0	-15	0	-12	0	-9	0	-7	0	-4	19	15	9	7	4	19	15	7	5	4	11	9	7	5	4
80	120	0	-20	0	-15	0	-10	0	-8	0	-5	25	19	10	8	5	25	19	8	6	5	15	11	8	6	5
120	150	0	-25	0	-18	0	-13	0	-10	0	-7	31	23	13	10	-	31	23	10	8	7	19	14	10	8	7
150	180	0	-25	0	-18	0	-13	0	-10	0	-7	31	23	13	10		31	23	10	8	7	19	14	10	8	7
180	250	0	-30	0	-22	0	-15	0	-12	0	-8	38	28	15	12	0	38	28	12	9	8	23	17	12	9	8
	315	0		0		-		U	-12	U	-0				12	0	44			Э	0				Э	0
250		_	-35	-	-25	0	-18				_	44	31	18				31	14			26	19	14		
315	400	0	-40	0	-30	0	-23	_	_	_	_	50	38	23		_	50	38	18	_	_	30	23	18	_	_
400	500	0	-45	0	-35	_	_	_	_	_	_	56	44	_	_	_	56	44	_	_	_	34	26	_	_	_
500	630	0	-50	0	-40	_		_	_	_	_	63	50	_	_	_	63	50	_	_	_	38	30	_	_	

Table a.2 Outer rings

Table	5 a.2 O	uter iiii	ys																								
	Nomin outside diamet	e		Dir	nensi	onal to diame	eter w	ithin p		outsic	le						0	utside		met V_{Dp}	er v	ariati	on				
	D						Δ D	mp										l	оре	en ty	ре		l				
	mm												dia	amet	er se	eries	9	dia	mete	er se	ries	0.1	dia	mete	r seri	ies 2	.3.4
			clas	ss 0	cla	ss 6	clas	ss 5	clas	ss 4	cla	ass 2	class o	lass	class 5	class 4	class 2	class o	class	class 5	class 4	class 2	class 0	class 6	class 5	class 4	class 2
	over	incl.	high	low	high	low	high	low	high	low	high	low	"		nax		2	0	•	nax		2	"	_	max		2
	2.5	6	0	-8	0	-7	0	-5	0	-4	0	-2.5	10	9	5	4	2.5	8	7	4	3	2.5	6	5	4	3	2.5
	6	18	0	-8	0	-7	0	-5	0	-4	0	-2.5	10	9	5	4	2.5	8	7	4	3	2.5	6	5	4	3	2.5
	18	30	0	-9	0	-8	0	-6	0	-5	0	-4	12	10	6	5	4	9	8	5	4	4	7	6	5	4	4
	30	50	0	-11	0	-9	0	-7	0	-6	0	-4	14	11	7	6	4	11	9	5	5	4	8	7	5	5	4
	50	80	0	-13	0	-11	0	-9	0	-7	0	-4	16	14	9	7	4	13	11	7	5	4	10	8	7	5	4
	80	120	0	-15	0	-13	0	-10	0	-8	0	-5	19	16	10	8	5	19	16	8	6	5	11	10	8	6	5
1	20	150	0	-18	0	-15	0	-11	0	-9	0	-5	23	19	11	9	5	23	19	8	7	5	14	11	8	7	5
1	50	180	0	-25	0	-18	0	-13	0	-10	0	-7	31	23	13	10	7	31	23	10	8	7	19	14	10	8	7
1	80	250	0	-30	0	-20	0	-15	0	-11	0	-8	38	25	15	11	8	38	25	11	8	8	23	15	11	8	8
2	250	315	0	-35	0	-25	0	-18	0	-13	0	-8	44	31	18	13	8	44	31	14	10	8	26	19	14	10	8
3	315	400	0	-40	0	-28	0	-20	0	-15	0	-10	50	35	20	15	10	50	35	15	11	10	30	21	15	11	10
4	100	500	0	-45	0	-33	0	-23	_	_	_	_	56	41	23	_	_	56	41	17	_	_	34	25	17	_	_
5	500	630	0	-50	0	-38	0	-28	_	_	_	_	63	48	28	_	_	63	48	21	_	_	38	29	21	_	_
6	30	800	0	-75	0	-45	0	-35	_	_	_	_	94	56	35	_	_	94	56	26	_	_	55	34	26	_	_

Unit μ m

Mea	va	ore cariati		eter	ı		ner r al rui <i>K</i> ia	_	l		rui th b	nout ore		ner r al rui	ing nout			Inr	ner ring	_	dth de	eviat	ion			lnı		ring riation V_{Bs}		h
class	class	class		class	class	class		class	class	class	class	class	class	Sia class	class	clas	s 0,6		rmal	cl	ass 2	clas	mod	dified clas		class c	lass	class	class	class
0	6	5 max	4	2	0	6	5 max	4	2	5	4 max	2 (5	4 max	2	high			low h				low			0	6	5 max	4	2
6 6 6	5 5 5	3 3 3	2 2 2	1.5 1.5 1.5	10 10 10	5 6 7		2.5	1.5 1.5 1.5	7 7 7	3 3 3	1.5 1.5 1.5	7 7 7	3 3 3	1.5 1.5 1.5	0 0 0	-40 -120 -120	0 0 0	-40 -40 -80	0 0 0	-40 -40 -80	0	_ -250 -250	0	-250 -250 -250	12 15 20	15	5	2.5 2.5 2.5	
8 9 11	6 8 9	3 4 5	2.5 3 3.5	1.5	13 15 20	8 10 10	4 5 5	3 4 4	2.5 2.5 2.5	8 8 8	4 4 5	1.5 1.5 1.5	8 8 8	4 4 5	2.5 2.5 2.5	0 0 0	-120 -120 -150	0	-120 -120 -150	0 0 0	-120 -120 -150	0 0 0	-250 -250 -380	0	-250 -250 -250	20 20 25	20 20 25	5	2.5 3 4	1.5 1.5 1.5
15 19 19	11 14 14	5 7 7	4 5 5	2.5 3.5 3.5	25 30 30	-	6 8 8	5 6 6	2.5 2.5 5	9 10 10	5 6 6	2.5 2.5 4	9 10 10	5 7 7	2.5 2.5 5	0 0 0	-200 -250 -250	0 0 0	-200 -250 -250	0 0 0	-200 -250 -250	0 0 0	-380 -500 -500	0	-380 -380 -380	25 30 30	25 30 30	8	4 5 5	2.5 2.5 4
23 26 30	17 19 23	8 9 12	6 —	4 	40 50 60	20 25 30	10 13 15	8 <u>-</u>	5 — —	11 13 15	7 _	5 — —	13 15 20	8	5 — —	0 0 0	-300 -350 -400	0 0 0	-300 — —	0 <u>-</u>	-300 — —	0 0 0	-500 -500 -630	0	-500 — —	30 35 40	35	10 13 15	6 —	5 — —
	26 30	_	_	_		35 40		_	_	_	_	_	<u></u>	_	_	0 0	-450 -500	_	_	_	_	_ _	_	_	_	50 60	45 50		_	_

Outside d variatid Sealed/ bear diamete	on V_{DP} /shield ings	Ме		oore c variati VDmp	on	ter	Oute	er rin	g rac		ınout		ide su clinat	urface ion		side i al run Sea	-	Outer ring width deviation	vari	ing width iation	
2,3,4 class 0 ma	0,1,2,3,4 class 6 ax	class 0	class 6	class 5 max	4	class 2	class 0	class 6	class 5 max	class 4	class 2	class 5	class 4 max	2	class 5	class 4 max	class 2	all type	0.000 0,0	class class 5 4 nax	class 2
10 10 12	9 9 10	6 6 7	5 5 6	3 3 3	2 2 2.5	1.5 1.5 2	15 15 15	8 8 9	5 5 6	3 3 4	1.5 1.5 2.5	8 8 8	4 4 4	1.5 1.5 1.5	8 8 8	5 5 5	1.5 1.5 2.5	Depends on tolerance of	Depends on	5 2.5 5 2.5 5 2.5	5 1.5
16 20 26	13 16 20	8 10 11	7 8 10	4 5 5	3 3.5 4	2 2 2.5	20 25 35	10 13 18	7 8 10	5 5 6	2.5 4 5	8 8 9	4 4 5	1.5 1.5 2.5	8 10 11	5 5 6	2.5 4 5	Δ_{Bs} in relation to d of same bearing	tolerance of Δ_{Bs} in relation to d of same	8 4	5 1.5 1.5 2.5
30 38 —	25 30 —	14 19 23	11 14 15	6 7 8	5 5 6	2.5 3.5 4	40 45 50	20 23 25	11 13 15	7 8 10	5 5 7	10 10 11	5 5 7	2.5 2.5 4	13 14 15	7 8 10	5 5 7		bearing	8 5 8 5 10 7	2.5 2.5 4
_ _ _	_	26 30 34	19 21 25	9 10 12	7 8	4 5 —	60 70 80	30 35 40	18 20 23	11 13	7 8 —	13 13 15	8 10 —	5 7 —	18 20 23	10 13	7 8 —			11 7 13 8 15 —	5 7
_	_	38 55	29 34	14 18			100 120	50 60	25 30	_	_	18	_	_	25 30	_	_			18 — 20 —	_

Table b Tolerance of tapered roller bearings (Metric series)

Table b.1 Inner rings

Nomir bore diame	9			nal tole amete				E		amete ation ⁄ _{dp}	r	Mea	an bore varia		eter	Inne	Ŭ	radial r Kia	runout	Sid run- with	out bore
mm	1	class	0,6X	clas	s 5,6	cla	ss 4	class 0,6X	class 6	class 5	class 4	class 0,6X	class 6	class 5	class 4	class 0,6X	class 6	class 5	class 4	class 5	class 4
over	incl.	high	low	high	low	high	low		n	nax			n	nax			n	nax		m	nax
10	18	0	-12	0	-7	0	-5	12	7	5	4	9	5	5	4	15	7	5	3	7	3
18	30	0	-12	0	-8	0	-6	12	8	6	5	9	6	5	4	18	8	5	3	8	4
30	50	0	-12	0	-10	0	-8	12	10	8	6	9	8	5	5	20	10	6	4	8	4
50	80	0	-15	0	-12	0	-9	15	12	9	7	11	9	6	5	25	10	7	4	8	5
80	120	0	-20	0	-15	0	-10	20	15	11	8	15	11	8	5	30	13	8	5	9	5
120	180	0	-25	0	-18	0	-13	25	18	14	10	19	14	9	7	35	18	11	6	10	6
180	250	0	-30	0	-22	0	-15	30	22	17	11	23	16	11	8	50	20	13	8	11	7
250	315	0	-35	_	_	_	_	35	_	_	_	26	_	_	_	60	_	_	_	—	_
315	400	0	-40	_	_	_	_	40	_	_	_	30	_	_	_	70	_	_	_	—	

Table b.2 Outer rings

outs dian	ninal side neter				er witl	e of me		Oı		diame [.] ation	ter	Mea		e diam ation	eter	Oute	r ring ı	adial ı .ea	runout	Outs surf inclin	face lation
over	m incl.	class	0,6X low	clas:	, .	cla high	ss 4 Iow	class 0,6X	class 6	class 5	class 4	class 0,6X	class 6	class 5	class 4	class 0,6X	class 6	class 5	class 4	class 5	class 4
18	30	0	-12		-8	0	-6	12	8	6	5	9	6	5	4	18	9	6	4	8	4
30		0	-14	0	-0 -9	0	-0 -7	14	9	7	5	11	7	5	5	20	10	7	5	8	4
50	50 80	0	-16	0	-11	0	-9	16	11	8	7	12	8	6	5	25	13	8	5	8	4
80	120	0	-18	0	-13	0	-10	18	13	10	8	14	10	7	5	35	18	10	6	9	5
120	150	0	-20	0	-15	0	-11	20	15	11	8	15	11	8	6	40	20	11	7	10	5
150	180	0	-25	0	-18	0	-13	25	18	14	10	19	14	9	7	45	23	13	8	10	5
180	250	0	-30	0	-20	0	-15	30	20	15	11	23	15	10	8	50	25	15	10	11	7
250	315	0	-35	0	-25	0	-18	35	25	19	14	26	19	13	9	60	30	18	11	13	8
315	400	0	-40	0	-28	0	-20	40	28	22	15	30	21	14	10	70	35	20	13	13	10

Table b.3 Effective width of outer and inner rings with roller $Unit \mu m$

Nom bo diam d	ore leter	effective of roller a of tapere	ind inner	ring asse earing	embly			bearing ovidth devi	
		class	s 0	class	6X	clas	s 0	class	6X
over	incl.	high	low	high	low	high	low	high	low
10	18	+100	0	+50	0	+100	0	+50	0
18	30	+100	0	+50	0	+100	0	+50	0
30	50	+100	0	+50	0	+100	0	+50	0
50	80	+100	0	+50	0	+100	0	+50	0
80	120	+100	-100	+50	0	+100	-100	+50	0
120	180	+150	-150	+50	0	+200	-100	+100	0
180	250	+150	-150	+50	0	+200	-100	+100	0
250	315	+150	-150	+100	0	+200	-100	+100	0
315	400	+200	-200	+100	0	+200	-200	+100	0

Inner ring axial runout		Inner	Ŭ	dth de	viatior	1	Asse	,	vidth devi ered rolle Δ:	er bea	9	-row	Combinati deviation of row beat $\Delta B1s$,	of double	Combinati deviation bear Δ_{B2s} ,	of 4-row
class 4	clas	s 0,6	class	s 6X	clas	s 4,5	class	0,6	class	6X	class	3 4,5	class	0,6,5	class	0,6,5
max	high	low	high	low	high	low	high	low	high	low	high	low	high	low	high	low
3	0	-120	0	-50	0	-200	+200	0	+100	0	+200	-200	_	_	_	_
4	0	-120	0	-50	0	-200	+200	0	+100	0	+200	-200	_	_	_	_
4	0	-120	0	-50	0	-240	+200	0	+100	0	+200	-200	+240	-240	_	_
4	0	-150	0	-50	0	-300	+200	0	+100	0	+200	-200	+300	-300	_	_
5	0	-200	0	-50	0	-400	+200	-200	+100	0	+200	-200	+400	-400	+500	-500
7	0	-250	0	-50	0	-500	+350	-250	+150	0	+350	-250	+500	-500	+600	-600
8	0	-300	0	-50	0	-600	+350	-250	+150	0	+350	-250	+600	-600	+750	-750
_	0	-350	0	-50	_	_	+350	-250	+200	0	_	_	+700	-700	+900	-900
_	0	-400	0	-50	_	_	+400	-400	+200	0	_	_	+800	-800	+1 000	-1 000

Unit μ m

				· · · · · · · · · · · · · · · · · · ·
Outer ring axial runout S_{ea}	Outer ring	g wid		iation
class 4	class 0,6,5	5,4	clas	s 6X
max	sup.	inf.	sup.	inf.
5 5 5 6 7 8	Depends to tolerance Δ_{Bs} in relation to of same bearing	of	0 0 0 0 0	-100 -100 -100 -100 -100 -100
10 10 13	9		0 0 0	-100 -100 -100

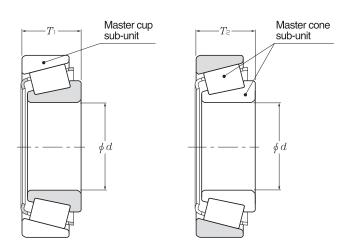


Table c Tolerance of tapered roller bearings (Inch series)

Table c.1 Inner rings

Unit μ m

00
00
low
0
0
_
_
_
_
_

Table c.2 Outer rings

Unit μ m

											Onii μ m
Nominal outside diameter				5	Single outs	ide diameter	deviation				
D						ΔDs					
mm (inch)											
		Class	4	Class	3 2	Class	s 3	Class	s 0	Class	00
over inc	i.	high	low	high	low	high	low	high	low	high	low
- 266.7 (10.5)	+25	0	+25	0	+13	0	+13	0	+8	0
266.7 (10.5) 304.8 (12)	+25	0	+25	0	+13	0	+13	0		
304.8 (12) 609.6 (24)	+51	0	+51	0	+25	0	_	_	_	_
609.6 (24) 914.4 (36)	+76	0	+76	0	+38	0	_	_	_	_
914.4 (36) 1 219.2 (48)	+102	0		_	+51	0		_	_	_
1 219.2 (48)	•	+127	0		_	+76	0	_	_	_	_

Table d Tolerance of thrust ball bearings

Table d.1 Shaft raceway washer

	Table u.i o	mait racewa	y wasner									Offit μ fit
Nominal bore diameter			N		ameter deviati	Bore diameter variation $V_{d m p}$		Raceway thickness variation S_i				
mm		Class Class			Class	Class	Class	Class	Class	Class		
			0,6,5		4		0,6,5	4	0	6	5	4
	over	ver incl. high low		high	low	max		max				
	_	18	0	-8	0	-7	6	5	10	5	3	2
	18	30	0	-10	0	-8	8	6	10	5	3	2
	30	50	0	-12	0	-10	9	8	10	6	3	2
	50	80	0	-15	0	-12	11	9	10	7	4	3
	80	120	0	-20	0	-15	15	11	15	8	4	3
	120	180	0	-25	0	-18	19	14	15	9	5	4
	180	250	0	-30	0	-22	23	17	20	10	5	4
	250	315	0	-35	0	-25	26	19	25	13	7	5
	315	400	0	-40	0	-30	30	23	30	15	7	5
	400	500	0	-45	0	-35	34	26	30	18	9	6
	500	630	0	-50	0	-40	38	30	35	21	11	7

Table d.2 Housing raceway washer

Unit μ m

	outs	ninal side neter	Me	Mean outside diameter deviation Outside diameter variation Δ_{Dmp} V_{Dp}			ation	Raceway thickness variation $S_{\rm e}$				
			Cla	Class Class			Class	Class	Class	Class	Class	Class
	'''	mm 0,6,5		6,5	4		0,6,5	4	0	6	5	4
	over	incl.	high	low	high	low	m	ax	max			
•	10 18 30	18 30 50	0 0 0	-11 -13 -16	0 0 0	-7 -8 -9	8 10 12	5 6 7		According to the tolerance of S_1 against " d " of the same bearings		
	50 80 120	80 120 180	0 0 0	-19 -22 -25	0 0 0	-11 -13 -15	14 17 19	8 10 11				
	180 250 315	250 315 400	0 0 0	-30 -35 -40	0 0 0	-20 -25 -28	23 26 30	15 19 21				
	400 500 630	500 630 800	0 0 0	-45 -50 -75	0 0 0	-33 -38 -45	34 38 55	25 29 34				

Table d.3 Bearing height

Nom boi diam d mr	re eter	Single direction Bearing height deviation Δ_{Ts}				
over	incl.	high	low			
30 50	30 50 80	0 0 0	-75 -100 -125			
80 120 180	120 180 250	0 0 0	-150 -175 -200			
250 315 400 500	315 400 500 630	0 0 0 0	-225 -300 -350 -400			

Table e Tolerance of spherical thrust roller bearing

Table e.1 Shaft raceway washer

Table e.1 Shaπ raceway wasner								
Nominal bore diameter d mm		Mean bore diameter deviation Δ_{dmp}		Bore diameter variation V_{dp}	Side runout with bore	Bearing height deviation $\Delta au_{ extsf{F}}$		
over	incl.	high	low	max	max	high	low	
50 80 120 180 250 315 400	80 120 180 250 315 400 500	0 0 0 0 0	-15 -20 -25 -30 -35 -40	11 15 19 23 26 30 34	25 25 30 30 35 40 45	+150 +200 +250 +300 +350 +400 +450	-150 -200 -250 -300 -350 -400	

Table e.2 Housing raceway washer

			Unit μ m			
outside	minal e diameter D	Single plane mean outside diameter deviation				
	mm		30mp			
over	over incl.		low			
120	180	0	-25			
180	250	0	-30			
250	315	0	-35			
315	400	0	-40			
400	500	0	-45			
500	500 630		-50			
630	800	О	-75			
800	1,000	0	-100			