Bearing Lubrication

Bearing Lubrication

Proper lubrication for rolling element bearings is critical for reliable bearing operation and prevention of premature damage and a reduction in fatigue life. The proper bearing lubricant must provide a separating film between the rolling elements, raceways, and cage to prevent metal-to-metal contact. The lubricant film must be thick enough under operating conditions to prevent contact of rolling element and raceway asperities.

If the asperities of rolling elements and races of an anti-friction bearing come into contact with each other, a certain amount of molecular adhesion or micro-welding or shearing of these asperities as a result of the relative motion between them can be expected. The result is an undesirable surface change of the rolling surfaces. Ideal lubrication requires that an oil film be continually present to prevent contact of the surface asperities and metal to metal contact.

In addition to preventing metal-to-metal contact, proper bearing lubricants help perform the following function:

- Reduce friction, heat generation, torque, and power consumption
- Provide a heat transfer medium
- Prevent corrosion
- · Aid in providing proper sealing and preventing contamination

Bearing lubrication is broadly categorized as being either grease or oil lubrication. The decision to use grease or oil and what type of lubricant system to use, are dependent on the bearing type and application operating conditions.

Bearing greasing methods and amounts

There are two methods of providing bearing grease lubrication. One is the closed lubrication, in which grease is filed in advance into a shielded or sealed bearing; the other is the feeding method in which the bearing and housing are greased at assembly with the proper amount and designed to allow re-greasing and replacement at specified intervals. The dosed method using a pre-lubricated shielded or sealed bearing is well suited for applications where cost and space limitations preclude the use of grease filled housing or where relubrication is not possible or necessary. Conversely, the use of the feeding method has the advantage of allowing the replacement on periodic intervals in those applications where operating conditions require grease replacement.

For bearing applications utilizing the feeding method, there should be a grease fitting and a vent at opposite ends of the housing near the top. Also, a drain plug should be located near the bottom of the housing to allow purging of the old grease during relubrication. A bearing should be initially greased at assembly by packing it in on both sides and making sure the grease is between the rolling elements and cage. Regreasing should always occur while the bearing is in motion at the normal operating temperature.

Grease amount

The amount of grease needed to effectively lubricate a bearing is normally very small. In general, grease fill should be one-third to one-half of the space around the bearing; however, this may vary according to the housing design and application requirements. In applications with high speed and low torque requirements, the bearings can be lubricated with very small quantities of greases. Similarly, in low speed applications where the bearing may be exposed to dirt or moisture, the space around the bearing can be filled from two-thirds to nearly full to prevent contamination. If an excessive amount of grease is used when not required, additional heat will be generated from the churning, resulting in a softening and deterioration of the grease, and a reduction in bearing life. The grease weight required for a bearing can be calculated in grams.

Grease quantity = 0.05 x D x B gms.

Regreasing intervals and grease life

With grease lubricated bearings, periodic relubrication is normally required to ensure efficient operation. Over a period of time, most grease will eventually start to harden due to oxidation. The exception to this is in presealed bearings where relubrication is usually not required.

When regreasing bearings, it is necessary to be sure that the grease fitting is clean prior to injecting the grease. A hand operated grease gun should be used for relubrication, but the use of high pressure needs to be avoided. High pressure may blow out seals. When using a grease gun, it should be calibrated for the

proper amount of grease, and confirmed that the grease in the gun is the same as what was initially applied to the bearings.

The main considerations for determining a relubrication cycle are operating speed, bearing size, operating temperature, and sealing efficiency. Seals are very critical with grease lubrication because of the importance to keep the grease free from contamination. Contamination that reaches the grease is trapped and will cause bearing damage and wear problems.

As the chart below shows leading grease available in the market with their specifications

Manufacturer	Product	BaseOil/thickener	Working temperature range °C	0.1mm Worked Penetration °C	Dropping Point °C	Remark
Kyodo Yushi	Multemp SRL	Polyol ester+Diester/ Lithium hydroxy Stearate	-50~150	250	190	Low noise Long life, High temperature
	Multemp PS	Diester+Refined mineral oil Lithium Stearate	-60~130	NO.2	190	Low torque, Outstanding noise Suppressant property
	Multemp SB-M	Synthetic hydrocarban/Diurea	-40~200	220	>260	High temperature,High speed operation, low noise property
	Raremax Super N	Polyol ester+Diester/ Lithium hydroxy Stearate	-40~180	260	120	Low noise Long life, High temperature
Shell	Alvania RLQ 2	Mineral oil / Lithium	-25~120	266	195	Wide applications available
	Alvania RL2	Mineral oil/ Lithium	-30~120	310	185	Wide applications available
	Alvania RL3	Mineral oil/ Lithium	-30~120	220	185	Not good for transmission
	Alvania EP 2	Mineral oil/ Lithium	-20~110	265	185	Long service life under heavy load water, resistance, Corrosian resistance
Kluber	Asonic GL Y 32	PAO, Ester oil/ Lithium	-50~140	265~295	>190	Low noise Long life, High temperature
	Asonic Q 74-73	PAO,Ester oil / Polyrea	-40~160	220~250	>250	Low noise, Long life, High temperature
	Klueberquiet BQH72-102	Ester oil / Polyurea	-40~180	250~280	>250	Low noise, Long life, High temperature
	Klueberquiet BEP72-82	Ester oil / Polyurea	-40~180	250~280	>250	High temperature, Available for auto generator bearings
	Petamo GHY 133 N	Mineral oil, PAO/ Polyrea	-30~160	265~295	>250	High temperature, Available for auto generator bearings
	Lsoflex LDS 18 Special A	Ester oil, Mineral oil / Li	-50~120	265~295	>190	Avaiable for pump bearings, Motor and its accessory
Exxon Mobil	Beacon 325	Diester / Lithium	-54~120	280	193	High Speed, Low noise Corrosian resistance
	Polyrex EM	Mineral / Diurea	-29~177	318	288	Low temperature
	Mobilgrease 28	Diester/ Microgel	-62~177	310	>260	Water resistance, High temperature
Chevron	SRI-2	ISOSYN/ Polyurea	-30~150	280	243	Water resistance, Corrosian resistance High temperature
Dupont	Krytox 240	Fluoinated / PTFE	-34~288	285		High temperature